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Abstract

Background: Estimation of incidence of the state of undiagnosed chronic disease provides a crucial missing link for
the monitoring of chronic disease epidemics and determining the degree to which changes in prevalence are
affected or biased by detection.

Methods: We developed a four-part compartment model for undiagnosed cases of irreversible chronic diseases with
a preclinical state that precedes the diagnosis. Applicability of the model is tested in a simulation study of a
hypothetical chronic disease and using diabetes data from the Health and Retirement Study (HRS).

Results: A two dimensional system of partial differential equations forms the basis for estimating incidence of the
undiagnosed and diagnosed disease states from the prevalence of the associated states. In the simulation study we
reach very good agreement between the estimates and the true values. Application to the HRS data demonstrates
practical relevance of the methods.

Discussion: We have demonstrated the applicability of the modeling framework in a simulation study and in the
analysis of the Health and Retirement Study. The model provides insight into the epidemiology of undiagnosed chronic
diseases.

Keywords: Compartment model, Incidence, Prevalence, Diabetes, Chronic disease, Undiagnosed disease, Case
finding, Screening, Health and Retirement Study

Background
Most major causes of chronic morbidity and mortality,
including diabetes, cancer, osteoporosis, cardiovascular
disease, and dementia, pass through undiagnosed stages,
at which clinically defined and recognized thresholds for
a particular disease have been met, but diagnosis has not
occurred due to either lack of awareness, symptoms, or
access to care [1–3]. In the case of diabetes, population
surveys have shown that 24 % to 75 % of prevalent cases
across different countries and settings have not been diag-
nosed and the diagnosis lag has been estimated as ranging
from three to seven years [4, 5]. With regard to demen-
tia, it is estimated that more than a half of all patients are
undiagnosed [6].
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High proportions or long durations of undiagnosed
chronic disease have several important clinical and epi-
demiological ramifications. First, the period prior to diag-
nosis may be a missed opportunity to implement effective
preventive interventions in clinical settings [7, 8]. Second,
the undiagnosed state creates problems for the accurate
monitoring of population health and response to public
health interventions [9]. In the United States, for exam-
ple, trends in diabetes incidence at a national level are
assessed using self-reports of diagnosed cases [10]; this
means that the degree to which recent diabetes trends
have been influenced by shifting awareness or detection of
existing cases, as opposed to the rate of occurrence of new
cases of disease, is unclear.
Despite the importance of understanding the undiag-

nosed prevalence of chronic diseases, few methods have
been considered to estimate rates of undiagnosed inci-
dence in settings of incomplete data. Illness-death models
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have been developed to estimate incidence rates from
prevalence data [11, 12]. Here we incorporate undiag-
nosed disease into an illness-death model using com-
plementary information on prevalence and mortality,
to permit estimation of undiagnosed incidence (Fig. 1).
Estimation of incidence of undiagnosed chronic disease
would provide a crucial missing link for the monitoring of
chronic disease epidemics and for untangling the degree
to which changes in prevalence are affected or biased by
detection.

Methods
Building upon previously published state models, for this
study we develop a model including an Undiagnosed state
(Fig. 1). The population of interest is partitioned into
the four states Normal (i.e., healthy with respect to the
chronic disease under consideration),Undiagnosed, Diag-
nosed (i.e., without and with a physician’s diagnosis), and
Dead. The transition rates between the states are denoted
as in the figure. The model described here is able to cope
with secular trends, (i.e., involves calendar time t) and the
different ages a of the subjects in the population, and thus
these models are called age-structured [13].
The proportion of the living population in the states

Normal, Undiagnosed, and Diagnosed are determined by
their initial values and the rates λ�,μk , � = 0, 1, k =
0, 1, 2. Let N0,N1, and N2 denote the numbers of persons
in the respective state Normal, Undiagnosed, and Diag-
nosed. In addition, we set N(t, a) := N0(t, a) + N1(t, a) +
N2(t, a). For (t, a) with N(t, a) > 0 define the preva-
lences pk(t, a) := Nk(t,a)

N(t,a) , k = 0, 1, 2. For example, N1(t, a)
denotes the number of persons aged a at time t with the
disease, but without a diagnosis.
After deriving the governing equations for the state

model in Fig. 1, we study an example of how the preva-
lences pk , k = 0, 1, 2, evolve if the rates λ�, � = 0, 1, and

μk , k = 0, 1, 2, are known. As we know the rates (i.e., the
“causes”) and want to calculate the prevalences (i.e., the
“effects”) we call this problem the forward problem.
Then, we examine whether the rates λ�, � = 0, 1, can

be estimated if the prevalences pk and the mortality rates
μk , k = 0, 1, 2, are known. We call this problem the
inverse problem. The inverse problem is important in epi-
demiology, in which surveying the prevalences pk is much
easier than surveying the transition rates λ�. For survey-
ing prevalences, cross-sectional studies suffice, whereas
examining rates requires lengthy follow-up studies. We
propose two approaches to solve the inverse problem.
After this, we describe and validate the methods in a

simulation study and apply it to U.S. nationally represen-
tative data from the Health and Retirement Study (HRS).
The HRS is a nationally representative longitudinal bian-
nual survey of individuals 50 years of age and older in the
United States. The survey is sponsored by the National
Institute on Ageing and performed by the Institute for
Social Research at the University of Michigan. The Health
Sciences Institutional Review Board at the University of
Michigan approved the HRS study design. The data used
for this analysis contain no unique personal identifiers
and are publicly available (after application). Permission
to use the HRS data was obtained from the University of
Michigan (Survey Research Center, 426 Thompson Street,
Ann Arbor, MI 48104).
All calculations for this work have been performed with

the statistical software R (The R Foundation for Statistical
Computing). The scripts for usage in R are provided as an
additional zip-file.

Results
The governing equations
Analogously to Brinks and Landwehr, [14], we look for
the numbers N0(t, a),N1(t, a) and N2(t, a) of healthy,

Fig. 1 Chronic disease model with four states. Persons in the state Normal are healthy with respect to the disease under consideration. After onset
of the disease, they change to state Undiagnosed and later to the state Diagnosed. The absorbing state Dead can be reached from all other states.
The numbers of persons in the states and the transition rates depend on calendar time t and age a
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undiagnosed, and diagnosed persons in terms of partial
differential equations (PDEs), which can be derived from
the disease model in Fig. 1. For the healthy persons, we get
the following initial value problem of Cauchy type:

(∂t + ∂a)N0(t, a) = − (μ0(t, a) + λ0(t, a)) N0(t, a)
N0(t, 0) = S0(t).

(1)

Here S0(t) is the number of healthy newborns at cal-
endar time t. Note that, in this work, we just consider
diseases contracted after birth. The notation ∂x denotes
the partial derivative with respect to x, x ∈ {t, a}.
Although the inclusion of the disease duration d is also

possible [12], hereinafter it is assumed that none of the
rates depend on d. Then, the numbers N1 and N2 of dis-
eased persons without and with diagnosis, respectively,
are described similarly:

(∂t + ∂a)N1(t, a) = − (μ1(t, a) + λ1(t, a)) N1(t, a)
+ λ0(t, a)N0(t, a)

N1(t, 0) = 0.
(2)

(∂t + ∂a)N2(t, a) = −μ2(t, a)N2(t, a) + λ1(t, a)N1(t, a)
N2(t, 0) = 0.

(3)

Prevalence, incidence andmortality
In epidemiological contexts, it has become common to
quantify the prevalences pk instead of the absolute num-
bersNk , k = 0, 1, 2.We expressed Eqs. (2) and (3) in terms
of prevalences p1 and p2. The prevalence p0 can be substi-
tuted by using the equation p0 = 1− p1 − p2. In addition,
often the mortality μ0 is unknown and the overall mortal-
ity (general mortality) μ is given. The overall mortality μ

in the population may be written as

μ = p0 μ0 + p1 μ1 + p2 μ2.

Then, the PDEs (2) and (3) can be reformulated as

(∂t + ∂a)p1 = − (λ0 + λ1 + μ1 − μ) p1 − λ0 p2 + λ0

(4)

(∂t + ∂a)p2 = λ1 p1 − (μ2 − μ) p2. (5)
Together with the initial conditions p1(t, 0) = p2(t, 0) =

0 for all t, the system (4) - (5) completely describes
the dynamics of the disease in the considered popula-
tion. Note that the system (4) - (5) does not explicitly
depend on the mortality of the healthy subjects μ0, which
is typically unknown. The remaining rates are either
accessible by (specially designed) epidemiological studies
(λ0, λ1,μ1,μ2) or by official vital statistics (μ).

Relation to the conventional illness-death model
The conventional illness-death model [15] does not dis-
tinguish between an undiagnosed or diagnosed disease

state. Thus, the conventional illness-death model consid-
ers the states Undiagnosed and Diagnosed to be pooled.
If we define the prevalence p as the pooled prevalence
p = p1 + p2, the system (4) - (5) can be used to derive the
following equation:

(∂t + ∂a)p = (1 − p) [λ0 − (μ − μ0)] . (6)

This equation has been proven in [14] for the conven-
tional illness-death model. Thus, the system (4) - (5) is
consistent with the conventional illness-death model if we
pool the Undiagnosed and Diagnosed states together.

Detection ratio
Once we have calculated the transition rates λ0 and λ1
for the model in Fig. 1, we can calculate a measure that
we call the age-specific detection ratio DR. For (t, a) with
λ0(t, a) > 0 define

DR(t, a) = λ1(t, a)
λ0(t, a)

. (7)

The detection ratio is a rate ratio. In the context of sur-
vival analysis such a ratio is called a hazard ratio [16]. For
a point in time t, it describes the (instantaneous) probabil-
ity of detecting an undiagnosed person of age a in relation
to the (instantaneous) probability of a healthy subject aged
a entering the Undiagnosed state.
A low detection ratio DR(t, a) implies that p1(t, a)

increases. More precisely: For (t, a) let be λ0(t, a) > 0
and p1(t, a) > 0, then for small time intervals δ > 0, a
detection ratio DR(t, a) with

DR(t, a) <
p0(t, a)
p1(t, a)

+ μ(t, a) − μ1(t, a)
λ0(t, a)︸ ︷︷ ︸

=:�(t,a)

,

implies p1(t+δ, a+δ) > p1(t, a). Vice versa, a high detec-
tion ratio DR(t, a) > �(t, a), implies p1(t + δ, a + δ) <

p1(t, a). This follows from (∂t + ∂a)p1 = 0 for DR = �,
see Eq. (4).

Simulation: forward problem
We use system (4) - (5) to describe a hypothetical irre-
versible disease, which is unknown until a specific point
in time t�. At t� the disease is detected and no longer
unknown. This could happen by the discovery of a new
pathogen or a novel diagnostic technique or by increased
awareness, attention, or access to care. Henceforth, physi-
cians start to look for the disease. As a consequence,
after t� the prevalence p1 of undetected cases decreases,
whereas the prevalence p2 of detected cases increases.
As an example, the general mortality μ is chosen as the
(approximated) general mortality of the German male
population from 1900 to 2010. For the approximation of
the mortality, we make the following approach:

μ(t, a) = exp (β0(t) + β1(t) a) ,
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with β0(t) = −7.078 − 0.02592 t and β1(t) = 0.06401 +
2.455 10−4 t. Calendar time t is counted in years since
January 1st, 1900.
For simplicity, the mortality rates μ�, � = 1, 2, are

assumed to be proportional to μ : μ1 = 3.5μ and μ2 =
2.5μ. The factor for μ1 is chosen to be larger than the one
for μ2, because in contrast to persons in the Diagnosed
state, persons in the Undiagnosed state cannot be treated
for the disease. The magnitude of the factors is motivated
by dementia [17].
The rate λ0 (Table 1) is the 1.5-fold of the age-specific

incidence rate of dementia in Germanmales [18]. Demen-
tia serves as a demonstration for an important chronic
disease. However, as we are mixing data from different
sources in different populations, the example is hypotheti-
cal and inferences about the disease itself should be drawn
very carefully.
For year t = 75, the rates λ1 are also shown in Table 1.

We assume a secular trend in λ1, mimicking increasing
awareness of the hypothetical disease. In the simulation,
λ1 increases by 1 % per year for all ages a.
If we solve the system (4) - (5) by the methods of

characteristics [19], we obtain the prevalences of the undi-
agnosed and diagnosed disease as shown in Fig. 2 and 3,
respectively. The qualitative change at t = 75 in both
prevalences p1 and p2 is clearly visible in the upper right
corner of the figures.
For direct comparison, the age-specific prevalences in

years t = 70 and t = 80 are additionally shown in Fig. 4.
At t = 70, there are no diagnosed cases (the hypothetical
disease is not detected yet). The prevalence of the undi-
agnosed cases (p1) peaks at about 16 %, at the age of 91
years. Ten years later, the disease has been detected and
the medical community is making diagnoses. Hence, the
prevalence of the undiagnosed disease has decreased sub-
stantially - to less than 7 %. Especially in the higher age
groups (≥ 85), physicians are aware of and detect a high

Table 1 Age-specific incidence rates in the simulation

Age Incidence λ0 Incidence λ1 in the year 75
(years) (per 100 person-years) (per 100 person-years)

≤ 62.5 0 0

67.5 0.45 3.3

72.5 1.05 7.8

77.5 2.55 18.8

82.5 4.50 33.3

87.5 7.80 57.6

92.5 11.40 84.2

97.5 14.85 109.7

≥ 100 16.80 124.1

Age-specific incidence rates λ0 and λ1. For t > 75 the rate λ1 increases by 1 %
annually for all ages

proportion of cases and the prevalence of diagnosed cases
(p2) has increased.
In this example, the detection ratioDR = λ1

λ0
is chosen to

be independent of the age a. It depends only on the calen-
dar time t. The time course ofDR is shown in Fig. 5. Before
year 75, the detection ratio is 0. Later, the physicians start
to diagnose the hypothetical disease at increasing rates.
The overall prevalence p (= p1 + p2) in year t = 70 dif-

fers substantially from the one at t = 80 (Fig. 6), which is
an effect of the lowered mortality for those diseased per-
sons whose condition has been detected. As the mortality
μ2 is considerably lower than μ1, the overall survival of
the diseased persons is improved after t = 75 and the
overall prevalence increases.

Inverse problem
An important epidemiological application is the calcula-
tion (of some) of the rates in the model, if the prevalences
pk , k = 1, 2, are known. A typical situation might be
that the mortality rates are recorded in death registries (or
other vital statistics) and two cross-sectional surveys are
conducted to obtain the age-specific prevalences pk , k =
1, 2, at two points in time, t1 and t2. The inverse problem
is about whether the underlying rates λ�, � = 0, 1, can
be reconstructed from the mortality and the prevalences.
In the next two subsections we will present two ways for
solving the inverse problem.

Direct solution of the inverse problem
We start with the observation, that Eq. (5) can be solved
for λ1. For p1 > 0 it holds:

λ1 = (∂t + ∂a)p2 + (μ2 − μ) p2
p1

. (8)

With known λ1, Eq. (4) can be solved for λ0. For 1−p1−
p2 > 0 it is:

λ0 = (∂t + ∂a)p1 + (λ1 + μ1 − μ) p1
1 − p1 − p2

. (9)

This is the direct solution of the inverse problem.
To give a practical demonstration of the direct solution,

assume that the age-specific prevalences pk , k = 1, 2, at
two points in time tj, j = 1, 2, and the mortality rates
μ,μ1, and μ2 are given at some time t′ with t1 < t′ < t2.
Then we can approximate

(∂t + ∂a)pk(t′, a)
.= pk(t2, a + t2 − t′) − pk(t1, a − t′ + t1)

t2 − t1
, k = 1, 2.

(10)

The symbol .= means that the partial derivative is
approximated by its linearisation. Terms of quadratic or
higher order in (t2 − t1) are neglected.
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Fig. 2 Prevalence of the undiagnosed disease. Prevalence p1 of undiagnosed disease over time t (abscissa) and age a (ordinate). The colour
corresponds to value of the prevalence (coding scheme on the right part of the figure)

We show an application based on the data from the for-
ward problem of the previous section. If we calculate p1
and p2 in t1 = 99 and t2 = 101 by solving the for-
ward problem, and then apply Eqs. (8) and (9) by using
the approximation in Eq. (10) for t′ = 100, we obtain
the incidences λ0 and λ1 as shown Fig. 7. For compari-
son, the true incidences are shown as blue dashed lines.
From visual inspection, the reconstructed incidences do
not differ from the true incidences. Indeed, the maximum
relative error in the age range a = 70, 71, . . . , 100 is 0.90 %

for λ0 and 1.26 % for λ1. The median relative errors are
0.13 % and 0.14 %.

Least squares solution
An alternative way of finding a solution for the inverse
problem is given by the following approach. Assuming
again we know the age-specific prevalences pk , k = 1, 2,
at two points in time tj, j = 1, 2, and the mortality rates
μ,μ1, and μ2 at some time t′ with t1 < t′ < t2. Typ-
ically, pk , k = 1, 2, are subject to sampling uncertainty.

Fig. 3 Prevalence of the diagnosed disease. Prevalence p2 of diagnosed disease over time t (abscissa) and age a (ordinate). The color corresponds to
value of the prevalence (coding scheme on the right part of the figure)
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Fig. 4 Prevalence of undiagnosed and diagnosed disease in years 70 and 80. Age-specific prevalence of undiagnosed (red, dashed lines) and
diagnosed disease (orange, solid lines) in year t = 70 (left) and in year t = 80 (right)

Let σk denote the standard error of pk . For a moment
let us assume that we know pk at t′, and that we have a
“guess” λ

(g)
� (t′). Then, we can use the system (4) - (5) to

approximate pk at t2 by

pk
(
t2, a|λ(g)

�

) .= pk
(
t′, a − h2

) + h2 (∂t + ∂a) pk
(
t′, a − h2|λ(g)

�

)

(11)

in which h2 = t2 − t′. The values of the partial derivatives
(∂t + ∂a) pk are calculated by the right-hand sides of the
associated Eqs. (4) and (5), respectively.
Similarly, we may approximate pk at t1 :

pk
(
t1, a|λ(g)

�

) .= pk
(
t′, a − h1

) − h1 (∂t + ∂a) pk
(
t′, a − h1|λ(g)

�

)

(12)

in which h1 = t′ − t1.

Fig. 5 Detection ratio over calendar time. The detection ratio DR in
the simulation depends only on the calendar time t, not on the age a.
Before year t = 75 the detection ratio DR is zero. After this the
awareness for the hypothetical disease increases

As λ
(g)
� was based on an arbitrary assumption that the

calculated values pk(tj, a|λ(g)
� ), k, j = 1, 2, are likely to

deviate from themeasured values pk(tj, a). Define the sum
of standardized squared error X2(λ

(g)
� ) as

X2
(
λ

(g)
�

)
:=

‖p1(t1, a) − p1
(
t1, a|λ(g)

�

)
‖2

σ 2
1 (t1, a)

+
‖p1(t2, a) − p1

(
t2, a|λ(g)

�

)
‖2

σ 2
1 (t2, a)

+
‖p2(t1, a) − p2

(
t1, a|λ(g)

�

)
‖2

σ 2
2 (t1, a)

+
‖p2(t2, a) − p2

(
t2, a|λ(g)

�

)
‖2

σ 2
2 (t2, a)

.

(13)

Fig. 6 Overall prevalence of the disease in year 70 and 80.
Age-specific overall prevalence (undiagnosed and diagnosed,
p1 + p2) in years t = 70 (black, dashed) and t = 80 (blue, solid)
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Fig. 7 Direct solution of the inverse problem. The reconstructed (red, solid) and true rates (blue, dashed) λ0 (left) and λ1 (right). Visually the true and
the reconstructed rates are indistinguishable

Then, the inverse problem can be written as aminimiza-
tion problem:

λ� = arg min
λ

(g)
� ≥0

X2
(
λ

(g)
�

)
, � = 0, 1. (14)

Hence, λ� is the weighted least squares solution, which
minimizes the squared deviation between the estimated
andmeasured pk in t1 and t2. Underlying theminimisation
approach is the idea that the error pk(tj, a) − pk(tj, a|λ(g)

� )

is approximately normally distributed with mean 0 and
standard deviation σk(tj, a) [20].
So far, we have assumed that we know pk at t′, which is

not the case if we just have data from two cross-sections
at t1 and t2. In this case, we can estimate pk(t′, a) by

pk(t′, a)
.= h2
h1 + h2

pk(t1, a− h1) + h1
h1 + h2

pk(t2, a+ h2).

We demonstrate the solution of the inverse problem
by the least squares approach in the example above
(see the previous section about directly solving the
inverse problem). As we do not have sampling uncer-
tainty in the example, we set σk = 1. For solving the
(constraint) minimisation problem, we use the R pack-
age nloptr [21]. The result is shown in Fig. 8. The
reconstructed incidences visually do not differ from the
true incidences. The maximum relative error in the
age range a = 70, 71, . . . , 100 is 1.7 % for λ0 and
3.2 % for λ1. The median relative errors are 0.29 % and
0.67 %.
Compared to the direct solution the median and max-

imum relative error increases, which is a consequence
of the approximations (11) and (12). However, the least
squares approach allows the inclusion of an error model
and an estimation of the resulting uncertainty in the λ� as
shown in the next section.

Fig. 8 Least squares solution of the inverse problem. The reconstructed (red, solid) and true rates (blue, dashed) λ0 (left) and λ1 (right). Visually, the
true and the reconstructed rates are nearly indistinguishable
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Example from the Health and Retirement Study
Estimates of diabetes prevalence andmortality were based
on data from the 2006, 2008, and 2010 waves of the HRS.
Prevalence of undiagnosed diabetes was calculated from

the random half sample of those participants aged 50 to
95 years, selected for the biomarkers blood tests in 2006
and 2008 [22] who had a valid HbA1c result (n = 6300
and n = 6115, respectively). Respondents who had a base-
line HbA1c of > 6.5 % and did not report a diabetes
diagnosis were defined as having undiagnosed diabetes.
Respondents in the 2006 sample (n = 243) with undiag-
nosed diabetes were followed to 2008 to assess the risk of
dying; similarly those in the 2008 sample (n = 284) were
followed to 2010. Due to the relatively low number of per-
sons who died (n = 19 and n = 16), the mortality data of
2006 and 2008 have been pooled.
Diagnosed diabetes was identified if the respondent

reported they had been told by a doctor that they had dia-
betes or high blood sugar [23]. Prevalence of diagnosed
diabetes was based on 17,860 persons aged 50 to 95 years
sampled in 2006 and 16,777 persons sampled in 2008.
Respondents in the 2006 sample with diagnosed diabetes
(n = 3714) were followed to 2008 to assess mortality. Dur-
ing that time 408 subjects died. Similarly those in the 2008
sample (n = 3768) were followed to 2010, with 503 death
cases. For consistency reasons, we pooled the mortality
data of both samples as the death cases in undiagnosed
diabetes.
We used the survey sample in 2008 of participants aged

50 to 95 years who were alive, or who had died and had a
proxy interview conducted by a family member or friend
(n = 17, 970), to assess mortality (n = 1173 died dur-
ing the period 2008–10). To obtain mortality risk in the
general population we ran a logistic model with death
as the dependent variable and age and sex as the inde-
pendent variables. Using the regression estimates (e.g.,

converting the odds to probabilities), we obtained the risk
of mortality for each age, and then averaged every two
years of age (i.e., 50–51, 52–53, . . . , 94–95).
Figure 9 shows the age-specific prevalence of undiag-

nosed and diagnosed diabetes in the male population of
the HRS in 2006 and 2008. In 2006 the prevalence of undi-
agnosed diabetes (p1, left part of Fig. 9) ranges from 3–4%.
Two years later this prevalence is about 5–6 %. Similarly,
the prevalence of diagnosed diabetes (p2) has increased
for all age groups (right part of Fig. 9).
Among the prevalences, the mortality of the general

population and themortality of the undiagnosed and diag-
nosed subjects are needed as input data for the method.
Figure 10 compares the risk of dying between 2006 and
2008 in the male HRS population (solid line) with the
general population (dashed line).
After describing the input data for the method, we cal-

culate the least squares solution, described in the previous
section. For this Eq. (13) is slightly modified, because we
need to estimate the probability of the death of a study
participant. Therefore, X2 in Eq. (13) was augmented by
the summand

‖pm(a) − pm(a|R(g))‖2
σ 2
m(a)

,

in which pm(a) is the observed age-specific mortality risk
with standard deviation σm. The modeled mortality risk
pm(a|R(g)) is assumed be to proportional to the mortal-
ity risk π(a) of the general population, with R(g) being the
proportionality factor: pm(a|R(g)) = R(g) π(a).
To obtain estimates of the standard error of the λ�, � =

0, 1, we use a probabilistic sensitivity analysis [24]: 10,000
samples from the distributions of the input values are
drawn and the associated least squares estimates for
λ�, � = 0, 1, are calculated. This leads to an empirical
estimate for the distribution of λ�.

Fig. 9 Prevalence of diagnosed and undiagnosed diabetes in men. Age course of the prevalence of undiagnosed (left) and diagnosed (right)
diabetes in the male population of HRS in 2006 (solid line) and 2008 (dashed line). Vertical bars are 95 % confidence intervals
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Fig. 10Mortality in men. Age course of the mortality in undiagnosed (left) and diagnosed (right) men of HRS from 2006 to 2008 (solid line). The
dashed line is the general mortality. Vertical bars are 95 % confidence intervals

Tables 2 and 3 show the results of the reconstructed
incidence rates λ�, � = 0, 1, for men and women. From
the empirical standard deviations of the estimates it can
be seen that the uncertainty in the estimates is rather high
compared to the empirical mean. This is a result of the
uncertainty in the input data, especially in the mortality of
the persons with undiagnosed diabetes.
Due to the uncertainty in the estimated incidence rates,

the corresponding age-specific detection ratios DR are
estimated after performing a log-transformation. It holds
that log(DR) = log λ1 − log λ0. Thus, the variance of
log(DR) can be estimated by the variances of log λ�, � =
0, 1, and the covariance. The corresponding estimates
are shown in Table 4. We confine ourselves to report-
ing the estimates without interpreting them, because the
uncertainty in estimated rates is too high to allow valid
conclusions from these ratios.

Discussion
In this work, we used a state model to derive relations
between incidence and mortality rates and the preva-
lence of undiagnosed and diagnosed persons in a chronic
disease. The result is a two dimensional system of par-
tial differential equations (PDEs) that forms a basis for

Table 2 Age-specific incidence rates for men in HRS

Age Incidence λ0 Incidence λ1
(years) (per 100 person-years) (per 100 person-years)

Mean SD Mean SD

54 2.05 1.12 54.18 30.11

62 2.22 1.25 24.62 16.18

70 3.13 1.21 35.50 16.48

78 1.87 1.40 30.55 18.45

86 0.25 0.64 36.66 28.70

Age-specific incidence rates λ0 and λ1 for men as reconstructed from the
prevalence and mortality data of the HRS study

estimating the incidence of the undiagnosed and diag-
nosed disease states from the prevalence of the associated
states. In a simulation study and data from the Health
and Retirement Study (HRS) we were able to show the
accuracy and demonstrate the practical applicability of the
method.
This method has several potential applications. First, it

provides an approach to estimate the combined incidence
for diabetes and similar conditions for which a large pro-
portion of cases are undiagnosed and there is a lag in the
identification of cases due to lack of symptoms, awareness,
or health care access. Second, the methods also provide a
way to determine the degree to which trends in incidence
are biased by changing levels of detection by examining
the ratio of diagnosed to undiagnosed incidence.
In an example, we have demonstrated the applicability

of the modeling framework for a hypothetical chronic dis-
ease that has been discovered at a specific point in time,
and has been diagnosed and treated thereafter. Apart from
the hypothetical example, the analysis of the HRS data
has proven applicability to real world data. Unfortunately,
the uncertainty in the input data from HRS leads to rel-
atively high uncertainty in the estimated incidence rates
(Tables 2 and 3). As the HRS study has not been powered

Table 3 Age-specific incidence rates for women in HRS

Age Incidence λ0 Incidence λ1
(years) (per 100 person-years) (per 100 person-years)

Mean SD Mean SD

54 1.41 0.88 25.39 16.00

62 2.77 0.96 42.51 19.20

70 2.60 1.02 19.07 12.07

78 1.53 1.11 21.28 12.97

86 1.46 1.32 7.85 9.13

Age-specific incidence rates λ0 and λ1 for women as reconstructed from the
prevalence and mortality data of the HRS study
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Table 4 Logarithms of the age- and sex-specific detection ratios
in HRS

Age (years) Detection ratio

Men Women

Mean SD Mean SD

54 3.29 0.81 2.88 0.92

62 2.36 0.94 2.67 0.58

70 2.39 0.63 1.89 0.80

78 2.82 0.96 2.65 0.97

86 4.19 1.27 1.73 1.26

Logarithms of the age-specific detection ratios logDR for men and women in HRS

to accurately estimate the mortality of the study partici-
pants, the high uncertainty is a consequence of the study
design. A more general analysis of how uncertainties and
errors in the input data propagate into the results of the
estimation, are subject of future work.
Our state model is an extension of the well-known

illness-death model [15, 25], which has one additional
state, Undiagnosed, which represents the subjects having
contracted the disease but who are as yet undiagnosed.
Using PDEs in the context of state models is not new
[14, 26] and neither is taking into account undiag-
nosed diabetes [27]. However, the combination of both
approaches is novel, and although our examples only con-
sidered non-communicable diseases, the model is poten-
tially also applicable to some incurable infectious diseases,
such as Hepatitis C or HIV, that have an asymptomatic
preclinical phase [28].
The system of PDEs essentially has three advantages

compared to other modelling techniques. First, the dis-
cretization errors using models with discrete time incre-
ments can be avoided. An example of these errors and the
enormous impact they may have is demonstrated in [14],
[Sect. 5]. Thus, the approach used here is more accurate
than using discrete time models. The second advantage
of PDEs lies in the fact that these equations are very well
understood from the mathematical point of view. With
very few assumptions on the smoothness of the right-
hand side of the PDE, the existence and uniqueness of the
solution is guaranteed [19]. Furthermore, there are a vari-
ety of freely available numerical routines to calculate the
solution of PDEs. The third advantage is their flexibility:
the new method may be applied to other chronic dis-
eases as well, such as chronic kidney disease, osteoporosis,
and cardiovascular disease. For each of these conditions,
there exist modeling approaches including undiagnosed
cases, which are important in health-economic models
and screening [29, 30].
A drawback of the method is the restriction to irre-

versible chronic diseases. As shown in Fig. 1, it is assumed
that there is no possibility to return to theNormal state. In

case of diabetes, we know that this assumption is false, as
bariatric surgery leads to remission in a large proportion
of cases [31]. Even in the case of a modest intervention,
like that received by the control condition of the Look
AHEAD Study, 2 % had remission in the first year [32].
Thus, a small percentage of the incident cases may return
to the Normal state [33, 34]. For diabetes, however, these
cases are rare and have little impact on the population
level that we are interested in. Other chronic diseases,
like dementia do not have the possibility of remission
at all. Thus, we consider the proposed methods useful
for exploring how awareness for a disease and diagnos-
tic possibilities may have an impact on the incidence of
the disease. The full potential of the method is likely to
become clear when time trends of the detection ratio of a
chronic disease are studied.
In summary, we have developed a four-part compart-

ment model with differential equations to estimate undi-
agnosed and diagnosed disease incidence and detection
ratios for chronic diseases with common undiagnosed
states. Future studies should validate our model using
prospective, population-based studies, and surveillance
systems.

Conclusion
Based on the four-state compartment model we derived
relations between the prevalences and the transition rates
in terms of a system of partial differential equations. The
partial differential equations provide insight into the epi-
demiology of undiagnosed chronic diseases. The applica-
bility of the modeling framework has been demonstrated
in a simulation study and in the analysis of the Health and
Retirement Study.
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